Quantum embedding theories to simulate condensed systems on quantum computers – Nature.com
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Computational Science volume 2, pages 424–432 (2022)
5
Metrics details
Quantum computers hold promise to improve the efficiency of quantum simulations of materials and to enable the investigation of systems and properties that are more complex than tractable at present on classical architectures. Here, we discuss computational frameworks to carry out electronic structure calculations of solids on noisy intermediate-scale quantum computers using embedding theories, and we give examples for a specific class of materials, that is, solid materials hosting spin defects. These are promising systems to build future quantum technologies, such as quantum computers, quantum sensors and quantum communication devices. Although quantum simulations on quantum architectures are in their infancy, promising results for realistic systems appear to be within reach.
This is a preview of subscription content
Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).
MathSciNet Article Google Scholar
Krylov, A. et al. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J. Chem. Phys. 149, 180901 (2018).
Article Google Scholar
Schleder, G. R., Padilha, A. C. M., Acosta, C. M., Costa, M. & Fazzio, A. From DFT to machine learning: recent approaches to materials science—a review. J. Phys. Mater. 2, 032001 (2019).
Article Google Scholar
Maurer, R. J. et al. Advances in density-functional calculations for materials modeling. Annu. Rev. Mater. Res. 49, 1–30 (2019).
Article Google Scholar
Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).
Article Google Scholar
McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).
MathSciNet Article Google Scholar
Bell, A. T. & Head-Gordon, M. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2, 453–477 (2011).
Article Google Scholar
Xu, S. & Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019).
Article Google Scholar
G. Wolfowicz et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021)
Dreyer, C. E., Alkauskas, A., Lyons, J. L., Janotti, A. & Van de Walle, C. G. First-principles calculations of point defects for quantum technologies. Annu. Rev. Mater. Res. 48, 1–26 (2018).
Article Google Scholar
Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).
Article Google Scholar
Agrawal, A. & Choudhary, A. Perspective: Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater. 4, 053208 (2016).
Article Google Scholar
Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 6, 1900808 (2019).
Article Google Scholar
S. Dong, S., Govoni, M. & Galli, G. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Chem. Sci. 12, 4970–4980 (2021).
Article Google Scholar
Yuan, X. A quantum-computing advantage for chemistry. Science 369, 1054–1055 (2020).
Article Google Scholar
V. E. Elfving et al. How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? Preprint at http://arxiv.org/abs/2009.12472 (2020).
von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys Rev. Res. 3, 033055 (2021).
Article Google Scholar
Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).
Article Google Scholar
Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).
Helgaker, T., Jorgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (Wiley, 2014)
Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2020)
Martin, R. M., Reining, L. & Ceperley, D. M. Interacting Electrons (Cambridge Univ. Press, 2016)
Jordan, P., Neumann, J. V. & Wigner, E. On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934).
MathSciNet MATH Article Google Scholar
Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. (N. Y.) 298, 210–226 (2002).
MathSciNet MATH Article Google Scholar
Seeley, J. T., Richard, M. J. & Love, P. J. The Bravyi–Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).
Article Google Scholar
Verstraete, F. & Cirac, J. I. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. J. Stat. Mech. Theory Exp. 2005, P09012–P09012 (2005).
MathSciNet MATH Article Google Scholar
Aleksandrowicz, G. et al. Qiskit: an open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562111 (2019).
McClean, J. R. et al. OpenFermion: the electronic structure package for quantum computers. Quantum Sci. Technol. 5, 034014 (2020).
Article Google Scholar
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Article Google Scholar
McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum–classical algorithms. New J. Phys. 18, 023023 (2016).
MATH Article Google Scholar
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).
Bravyi, S., Gosset, D., König, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).
Article Google Scholar
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
Article Google Scholar
Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).
Article Google Scholar
Li, Z. et al. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep. 1, 88 (2011).
Article Google Scholar
Shen, Y. et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017).
Article Google Scholar
O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
Google Scholar
Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).
Article Google Scholar
Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).
Article Google Scholar
Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).
Google Scholar
Colless, J. I. et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8, 011021 (2018).
Google Scholar
Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).
Article Google Scholar
Ryabinkin, I. G., Yen, T.-C., Genin, S. N. & Izmaylov, A. F. Qubit coupled cluster method: a systematic approach to quantum chemistry on a quantum computer. J. Chem. Theory Comput. 14, 6317–6326 (2018).
Article Google Scholar
Li, Z. et al. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett. 122, 090504 (2019).
Article Google Scholar
Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).
McCaskey, A. J. et al. Quantum chemistry as a benchmark for near-term quantum computers. npj Quantum Inf. 5, 99 (2019).
Gao, Q. et al. Computational investigations of the lithium superoxide dimer rearrangement on noisy quantum devices. J. Phys. Chem. A 125, 1827–1836 (2021).
Article Google Scholar
Smart, S. E. & Mazziotti, D. A. Quantum–classical hybrid algorithm using an error-mitigating N-representability condition to compute the Mott metal–insulator transition. Phys. Rev. A 100, 022517 (2019).
Article Google Scholar
Sagastizabal, R. et al. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A 100, 010302 (2019).
Article Google Scholar
Higgott, O., Wang, D. & Brierley, S. Variational quantum computation of excited states. Quantum 3, 156 (2019).
Article Google Scholar
Google AI Quantum et al. Hartree–Fock on a superconducting qubit quantum computer Science 369, 1084–1089 (2020).
Metcalf, M., Bauman, N. P., Kowalski, K. & de Jong, W. A. Resource-efficient chemistry on quantum computers with the variational quantum eigensolver and the double unitary coupled-cluster approach. J. Chem. Theory Comput. 16, 6165–6175 (2020).
Article Google Scholar
Rossmannek, M., Barkoutsos, P. K., Ollitrault, P. J. & Tavernelli, I. Quantum HF/DFT-embedding algorithms for electronic structure calculations: scaling up to complex molecular systems. J. Chem. Phys. 154, 114105 (2021).
Article Google Scholar
Kawashima, Y. et al. Efficient and accurate electronic structure simulation demonstrated on a trapped-ion quantum computer. Preprint at http://arxiv.org/abs/2102.07045 (2021).
Teplukhin, A. et al. Computing molecular excited states on a D-Wave quantum annealer. Sci. Rep. 11, 18796 (2021).
Article Google Scholar
Kirsopp, J. J. M. et al. Quantum computational quantification of protein–ligand interactions. Preprint at http://arxiv.org/abs/2110.08163 (2021).
Jones, M. A., Vallury, H. J., Hill, C. D. & Hollenberg, L. C. L. Chemistry beyond the Hartree–Fock limit via quantum computed moments. Preprint at http://arxiv.org/abs/2111.08132 (2021).
Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum 4, 296 (2020).
Article Google Scholar
Cruz, P. M. Q., Catarina, G., Gautier, R. & Fernández-Rossier, J. Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates. Quantum Sci. Technol. 5, 044005 (2020).
Article Google Scholar
Montanaro, A. & Stanisic, S. Compressed variational quantum eigensolver for the Fermi–Hubbard model. Preprint at http://arxiv.org/abs/2006.01179 (2020).
Uvarov, A., Biamonte, J. D. & Yudin, D. Variational quantum eigensolver for frustrated quantum systems. Phys. Rev. B 102, 075104 (2020).
Article Google Scholar
Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).
Article Google Scholar
Mei, F. et al. Digital simulation of topological matter on programmable quantum processors. Phys. Rev. Lett. 125, 160503 (2020).
Article Google Scholar
Mizuta, K. et al. Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials. Phys. Rev. Res. 3, 043121 (2021).
Article Google Scholar
Liu, J., Wan, L., Li, Z. & Yang, J. Simulating periodic systems on a quantum computer using molecular orbitals. J. Chem. Theory Comput. 16, 6904–6914 (2020).
Article Google Scholar
Kaicher, M. P., Jäger, S. B., Dallaire-Demers, P.-L. & Wilhelm, F. K. Roadmap for quantum simulation of the fractional quantum Hall effect. Phys. Rev. A 102, 022607 (2020).
MathSciNet Article Google Scholar
Rahmani, A. et al. Creating and manipulating a Laughlin-type ν = 1/3 fractional quantum Hall state on a quantum computer with linear depth circuits. PRX Quantum 1, 020309 (2020).
Article Google Scholar
Kreula, J. M. et al. Few-qubit quantum–classical simulation of strongly correlated lattice fermions. EPJ Quantum Technol. 3, 11 (2016).
Kreula, J. M., Clark, S. R. & Jaksch, D. Non-linear quantum–classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics. Sci. Rep. 6, 32940 (2016).
Article Google Scholar
Jaderberg, B., Agarwal, A., Leonhardt, K., Kiffner, M. & Jaksch, D. Minimum hardware requirements for hybrid quantum–classical DMFT. Quantum Sci. Technol. 5, 034015 (2020).
Article Google Scholar
Lupo, C., Jamet, F., Tse, T., Rungger, I. & Weber, C. Maximally localized dynamical quantum embedding for solving many-body correlated systems. Preprint at http://arxiv.org/abs/2008.04281 (2021).
Bauer, B., Wecker, D., Millis, A. J., Hastings, M. B. & Troyer, M. Hybrid quantum–classical approach to correlated materials. Phys. Rev. X 6, 031045 (2016).
Google Scholar
Rubin, N. C. A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory. Preprint at http://arxiv.org/abs/1610.06910 (2016).
Mineh, L. & Montanaro, A. Solving the Hubbard model using density matrix embedding theory and the variational quantum eigensolver. Phys. Rev. B 105, 125117 (2022).
Article Google Scholar
Li, W. et al. Toward practical quantum embedding simulation of realistic chemical systems on near-term quantum computers. Preprint at http://arxiv.org/abs/2109.08062 (2021).
Georges, A. & Kotliar, G. Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992).
Article Google Scholar
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).
MathSciNet Article Google Scholar
Georges, A. Strongly correlated electron materials: dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715, 3–74 (2004).
Article Google Scholar
Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9, 7359–7367 (1997).
Article Google Scholar
Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).
Article Google Scholar
Wouters, S., Jiménez-Hoyos, C. A., Sun, Q. & Chan, G. K.-L. A practical guide to density matrix embedding theory in quantum chemistry. J. Chem. Theory Comput. 12, 2706–2719 (2016).
Article Google Scholar
Knizia, G. & Chan, G. K.-L. Density matrix embedding: a simple alternative to dynamical mean-field theory. Phys. Rev. Lett. 109, 186404 (2012).
Article Google Scholar
Knizia, G. & Chan, G. K.-L. Density matrix embedding: a strong-coupling quantum embedding theory. J. Chem. Theory Comput. 9, 1428–1432 (2013).
Article Google Scholar
Pham, H. Q., Hermes, M. R. & Gagliardi, L. Periodic electronic structure calculations with the density matrix embedding theory. J. Chem. Theory Comput. 16, 130–140 (2020).
Article Google Scholar
Hermes, M. R. & Gagliardi, L. Multiconfigurational self-consistent field theory with density matrix embedding: the localized active space self-consistent field method. J. Chem. Theory Comput. 15, 972–986 (2019).
Article Google Scholar
Pham, H. Q., Bernales, V. & Gagliardi, L. Can density matrix embedding theory with the complete activate space self-consistent field solver describe single and double bond breaking in molecular systems? J. Chem. Theory Comput. 14, 1960–1968 (2018).
Article Google Scholar
Rungger, I. et al. Dynamical mean field theory algorithm and experiment on quantum computers. Preprint at http://arxiv.org/abs/1910.04735 (2020).
Keen, T., Maier, T., Johnston, S. & Lougovski, P. Quantum–classical simulation of two-site dynamical mean-field theory on noisy quantum hardware. Quantum Sci. Technol. 5, 035001 (2020).
Article Google Scholar
Yao, Y., Zhang, F., Wang, C.-Z., Ho, K.-M. & Orth, P. P. Gutzwiller hybrid quantum–classical computing approach for correlated materials. Phys. Rev. Res. 3, 013184 (2021).
Article Google Scholar
Tilly, J. et al. Reduced density matrix sampling: self-consistent embedding and multiscale electronic structure on current generation quantum computers. Phys. Rev. Res. 3, 033230 (2021).
Article Google Scholar
Bassman, L. et al. Simulating quantum materials with digital quantum computers. Quantum Sci. Technol. 6, 043002 (2021).
Article Google Scholar
Cerasoli, F. T., Sherbert, K., Sławińska, J. & Nardelli, M. B. Quantum computation of silicon electronic band structure. Phys. Chem. Chem. Phys. 22, 21816–21822 (2020).
Article Google Scholar
Sureshbabu, S. H., Sajjan, M., Oh, S. & Kais, S. Implementation of quantum machine learning for electronic structure calculations of periodic systems on quantum computing devices. J. Chem. Inf. Modeling 61, 2667–2674 (2021).
Choudhary, K. Quantum computation for predicting electron and phonon properties of solids. J. Phys. Condens. Matter 33, 385501 (2021).
Article Google Scholar
Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).
Article Google Scholar
Wesolowski, T. A., Shedge, S. & Zhou, X. Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem. Rev. 115, 5891–5928 (2015).
Article Google Scholar
Jacob, C. R. & Neugebauer, J. Subsystem density-functional theory. WIREs Comput. Mol. Sci. 4, 325–362 (2014).
Article Google Scholar
Ma, H., Sheng, N., Govoni, M. & Galli, G. First-principles studies of strongly correlated states in defect spin qubits in diamond. Phys. Chem. Chem. Phys. 22, 25522–25527 (2020).
Article Google Scholar
Ma, H., Govoni, M. & Galli, G. Quantum simulations of materials on near-term quantum computers. npj Comput. Mater. 6, 85 (2020).
Ma, H., Sheng, N., Govoni, M. & Galli, G. Quantum embedding theory for strongly correlated states in materials. J. Chem. Theory Comput. 17, 2116–2125 (2021).
Article Google Scholar
Lan, T. N. & Zgid, D. Generalized self-energy embedding theory. J. Phys. Chem. Lett. 8, 2200–2205 (2017).
Article Google Scholar
Zgid, D. & Gull, E. Finite temperature quantum embedding theories for correlated systems. New J. Phys. 19, 023047 (2017).
Article Google Scholar
Rusakov, A. A., Iskakov, S., Tran, L. N. & Zgid, D. Self-energy embedding theory (SEET) for periodic systems. J. Chem. Theory Comput. 15, 229–240 (2019).
Article Google Scholar
Biermann, S., Aryasetiawan, F. & Georges, A. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. Phys. Rev. Lett. 90, 086402 (2003).
Article Google Scholar
Biermann, S. Dynamical screening effects in correlated electron materials—a progress report on combined many-body perturbation and dynamical mean field theory: ‘GW + DMFT’. J. Phys. Condens. Matter 26, 173202 (2014).
Article Google Scholar
Boehnke, L., Nilsson, F., Aryasetiawan, F. & Werner, P. When strong correlations become weak: consistent merging of GW and DMFT. Phys. Rev. B 94, 201106 (2016).
Article Google Scholar
Choi, S., Kutepov, A., Haule, K., van Schilfgaarde, M. & Kotliar, G. First-principles treatment of Mott insulators: linearized QSGW + DMFT approach npj Quantum Mater. 1, 16001 (2016).
Nilsson, F., Boehnke, L., Werner, P. & Aryasetiawan, F. Multitier self-consistent GW + EDMFT. Phys. Rev. Mater. 1, 043803 (2017).
Article Google Scholar
Sun, P. & Kotliar, G. Extended dynamical mean-field theory and GW method. Phys. Rev. B 66, 085120 (2002).
Article Google Scholar
Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).
Article Google Scholar
Dhawan, D., Metcalf, M. & Zgid, D. Dynamical self-energy mapping (DSEM) for quantum computing. Preprint at http://arxiv.org/abs/2010.05441 (2021).
Otten, M. et al. Localized quantum chemistry on quantum computers. Preprint at https://doi.org/10.33774/chemrxiv-2021-0nmwt (2021).
Seo, H., Govoni, M. & Galli, G. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies. Sci. Rep. 6, 20803 (2016).
Article Google Scholar
Seo, H., Ma, H., Govoni, M. & Galli, G. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies. Phys. Rev. Mater. 1, 075002 (2017).
Article Google Scholar
Ivády, V., Abrikosov, I. A. & Gali, A. First principles calculation of spin-related quantities for point defect qubit research. npj Comput. Mater. 4, 76 (2018). .
Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019).
Article Google Scholar
Sun, Q. & Chan, G. K.-L. Quantum embedding theories. Acc. Chem. Res. 49, 2705–2712 (2016).
Article Google Scholar
Jones, L. O., Mosquera, M. A., Schatz, G. C. & Ratner, M. A. Embedding methods for quantum chemistry: applications from materials to life sciences. J. Am. Chem. Soc. 142, 3281–3295 (2020).
Article Google Scholar
Lin, H. & Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117, 185 (2006).
Article Google Scholar
Wang, B. et al. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates. Acc. Chem. Res. 47, 2731–2738 (2014).
Article Google Scholar
Pezeshki, S. & Lin, H. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Mol. Simul. 41, 168–189 (2015).
Article Google Scholar
He, N. & Evangelista, F. A. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J. Chem. Phys. 152, 094107 (2020).
Article Google Scholar
Gujarati, T. P. et al. Quantum computation of reactions on surfaces using local embedding. Preprint at http://arxiv.org/abs/2203.07536 (2022).
Lau, B. T. G., Knizia, G. & Berkelbach, T. C. Regional embedding enables high-level quantum chemistry for surface science. J. Phys. Chem. Lett. 12, 1104–1109 (2021).
Article Google Scholar
Cui, Z.-H., Zhu, T. & Chan, G. K.-L. Efficient implementation of ab initio quantum embedding in periodic systems: density matrix embedding theory. J. Chem. Theory Comput. 16, 119–129 (2020).
Article Google Scholar
Cui, Z.-H., Zhai, H., Zhang, X. & Chan, G. K.-L. Systematic electronic structure in the cuprate parent state from quantum many-body simulations. Preprint at http://arxiv.org/abs/2112.09735 (2022).
Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).
MathSciNet Article Google Scholar
Sheng, N., Vorwerk, C., Govoni, M. & Galli, G. Green’s function formulation of quantum defect embedding theory. J. Chem. Theory Comput. 18, 3512–3522 (2022).
Article Google Scholar
Werner, P. & Millis, A. J. Efficient dynamical mean field simulation of the Holstein–Hubbard model. Phys. Rev. Lett. 99, 146404 (2007).
Article Google Scholar
Nilsson, F. & Aryasetiawan, F. Recent progress in first-principles methods for computing the electronic structure of correlated materials. Computation 6, 26 (2018).
Article Google Scholar
Sakuma, R., Werner, P. & Aryasetiawan, F. Electronic structure of SrVO3 within GW + DMFT. Phys. Rev. B 88, 235110 (2013).
Article Google Scholar
Petocchi, F., Nilsson, F., Aryasetiawan, F. & Werner, P. Screening from eg states and antiferromagnetic correlations in d(1, 2, 3) perovskites: a GW + EDMFT investigation. Phys. Rev. Res. 2, 013191 (2020).
Article Google Scholar
Tomczak, J. M., Liu, P., Toschi, A., Kresse, G. & Held, K. Merging GW with DMFT and non-local correlations beyond. Eur. Phys. J. Spec. Top. 226, 2565–2590 (2017).
Article Google Scholar
Reining, L. The GW approximation: content, successes and limitations. WIREs Comput. Mol. Sci. 8, e1344 (2018).
Article Google Scholar
Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
Article Google Scholar
Hedin, L. On correlation effects in electron spectroscopies and the GW approximation. J. Phys. Condens. Matter 11, R489–R528 (1999).
Article Google Scholar
Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237–312 (1998).
Article Google Scholar
Golze, D., Dvorak, M. & Rinke, P. The GW compendium: a practical guide to theoretical photoemission spectroscopy. Front. Chem. 7, 377 (2019).
Article Google Scholar
Choi, S., Semon, P., Kang, B., Kutepov, A. & Kotliar, G. ComDMFT: a massively parallel computer package for the electronic structure of correlated-electron systems. Comput. Phys. Commun. 244, 277–294 (2019).
Article Google Scholar
Tomczak, J. M., Casula, M., Miyake, T., Aryasetiawan, F. & Biermann, S. Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides. EPL 100, 67001 (2012).
Article Google Scholar
Aryasetiawan, F. et al. Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004).
Article Google Scholar
Aryasetiawan, F., Tomczak, J. M., Miyake, T. & Sakuma, R. Downfolded self-energy of many-electron systems. Phys. Rev. Lett. 102, 176402 (2009).
Article Google Scholar
Miyake, T. & Aryasetiawan, F. Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77, 085122 (2008).
Article Google Scholar
Hampel, A., Beck, S. & Ederer, C. Effect of charge self-consistency in DFT + DMFT calculations for complex transition metal oxides. Phys. Rev. Res. 2, 033088 (2020).
Article Google Scholar
Bhandary, S. & Held, K. Self-energy self-consistent density functional theory plus dynamical mean field theory. Phys. Rev. B 103, 245116 (2021).
Article Google Scholar
Lee, J. & Haule, K. Diatomic molecule as a testbed for combining DMFT with electronic structure methods such as GW and DFT. Phys. Rev. B 95, 155104 (2017).
Article Google Scholar
Eidelstein, E., Gull, E. & Cohen, G. Multiorbital quantum impurity solver for general interactions and hybridizations. Phys. Rev. Lett. 124, 206405 (2020).
Article Google Scholar
Seth, P., Krivenko, I., Ferrero, M. & Parcollet, O. TRIQS/CTHYB: a continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems. Comput. Phys. Commun. 200, 274–284 (2016).
Article Google Scholar
Werner, P. & Millis, A. J. Dynamical screening in correlated electron materials. Phys. Rev. Lett. 104, 146401 (2010).
Article Google Scholar
Medvedeva, D., Iskakov, S., Krien, F., Mazurenko, V. V. & Lichtenstein, A. I. Exact diagonalization solver for extended dynamical mean-field theory. Phys. Rev. B 96, 235149 (2017).
Article Google Scholar
Werner, P. & Casula, M. Dynamical screening in correlated electron systems—from lattice models to realistic materials. J. Phys. Condens. Matter 28, 383001 (2016).
Article Google Scholar
Adler, R., Kang, C.-J., Yee, C.-H. & Kotliar, G. Correlated materials design: prospects and challenges. Rep. Prog. Phys. 82, 012504 (2018).
Article Google Scholar
Haule, K. Exact double counting in combining the dynamical mean field theory and the density functional theory. Phys. Rev. Lett. 115, 196403 (2015).
Article Google Scholar
Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).
Article Google Scholar
Haule, K., Birol, T. & Kotliar, G. Covalency in transition-metal oxides within all-electron dynamical mean-field theory. Phys. Rev. B 90, 075136 (2014).
Article Google Scholar
van Roekeghem, A. et al. Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo2As2. Phys. Rev. Lett. 113, 266403 (2014).
Article Google Scholar
Yeh, C.-N., Iskakov, S., Zgid, D. & Gull, E. Electron correlations in the cubic paramagnetic perovskite Sr(V, Mn)O3: results from fully self-consistent self-energy embedding calculations. Phys. Rev. B 103, 195149 (2021).
Article Google Scholar
Iskakov, S., Yeh, C.-N., Gull, E. & Zgid, D. Ab initio self-energy embedding for the photoemission spectra of NiO and MnO. Phys. Rev. B 102, 085105 (2021).
Article Google Scholar
Kananenka, A. A., Gull, E. & Zgid, D. Systematically improvable multiscale solver for correlated electron systems. Phys. Rev. B 91, 121111 (2015).
Article Google Scholar
Lan, T. N., Kananenka, A. A. & Zgid, D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 143, 241102 (2015).
Article Google Scholar
Lan, T. N., Shee, A., Li, J., Gull, E. & Zgid, D. Testing self-energy embedding theory in combination with GW. Phys. Rev. B 96, 155106 (2017).
Article Google Scholar
Muechler, L. et al. Quantum embedding methods for correlated excited states of point defects: Case studies and challenges. Phys. Rev. B 105, 235104 (2022).
Article Google Scholar
Govoni, M. & Galli, G. Large scale GW calculations. J. Chem. Theory Comput. 11, 2680–2696 (2015).
Article Google Scholar
Scherpelz, P., Govoni, M., Hamada, I. & Galli, G. Implementation and validation of fully relativistic GW calculations: spin–orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016).
Article Google Scholar
Govoni, M. & Galli, G. GW100: comparison of methods and accuracy of results obtained with the WEST code. J. Chem. Theory Comput. 14, 1895–1909 (2018).
Article Google Scholar
Govoni, M., Whitmer, J., de Pablo, J., Gygi, F. & Galli, G. Code interoperability extends the scope of quantum simulations. npj Comput. Mater. 7, 32 (2021).
Casula, M., Rubtsov, A. & Biermann, S. Dynamical screening effects in correlated materials: plasmon satellites and spectral weight transfers from a Green’s function ansatz to extended dynamical mean field theory. Phys. Rev. B 85, 035115 (2012).
Article Google Scholar
Krivenko, I. S. & Biermann, S. Slave rotor approach to dynamically screened Coulomb interactions in solids. Phys. Rev. B 91, 155149 (2015).
Article Google Scholar
Nomura, Y., Sakai, S. & Arita, R. Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm. Phys. Rev. B 89, 195146 (2014).
Article Google Scholar
Mizuno, R., Ochi, M. & Kuroki, K. Development of an efficient impurity solver in dynamical mean field theory for multiband systems: iterative perturbation theory combined with parquet equations. Phys. Rev. B 104, 035160 (2021).
Article Google Scholar
Kotliar, G., Savrasov, S. Y., Pálsson, G. & Biroli, G. Cellular dynamical mean field approach to strongly correlated systems. Phys. Rev. Lett. 87, 186401 (2001).
Article Google Scholar
De Leo, L., Civelli, M. & Kotliar, G. Cellular dynamical mean-field theory of the periodic Anderson model. Phys. Rev. B 77, 075107 (2008).
Article Google Scholar
Gull, E. et al. Submatrix updates for the continuous-time auxiliary-field algorithm. Phys. Rev. B 83, 075122 (2011).
Article Google Scholar
Simons Collaboration on the Many-Electron Problem et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
Jamet, F. et al. Krylov variational quantum algorithm for first principles materials simulations. Preprint at http://arxiv.org/abs/2105.13298 (2021).
Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).
Article Google Scholar
Huang, B., Govoni, M. & Galli, G. Simulating the electronic structure of spin defects on quantum computers. PRX Quantum 3, 010339 (2022).
Article Google Scholar
McClean, J. R., Kimchi-Schwartz, M. E., Carter, J. & de Jong, W. A. Hybrid quantum–classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95, 042308 (2017).
Article Google Scholar
Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum–classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn 90, 032001 (2021).
Article Google Scholar
Bauer, B., Bravyi, S., Motta, M. & Kin-Lic Chan, G. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).
Article Google Scholar
Korol, K. J. M., Choo, K. & Mezzacapo, A. Quantum approximation algorithms for many-body and electronic structure problems. Preprint at http://arxiv.org/abs/2111.08090 (2021).
Wecker, D., Bauer, B., Clark, B. K., Hastings, M. B. & Troyer, M. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A 90, 022305 (2014).
Article Google Scholar
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Article Google Scholar
Lebreuilly, J., Noh, K., Wang, C.-H., Girvin, S. M. & Jiang, L. Autonomous quantum error correction and quantum computation. Preprint at http://arxiv.org/abs/2103.05007 (2021).
Fedorov, D. A., Otten, M. J., Gray, S. K. & Alexeev, Y. Ab initio molecular dynamics on quantum computers. J. Chem. Phys. 154, 164103 (2021).
Article Google Scholar
Macridin, A., Spentzouris, P., Amundson, J. & Harnik, R. Electron–phonon systems on a universal quantum computer. Phys. Rev. Lett. 121, 110504 (2018).
Article Google Scholar
Powers, C., Bassman, L. & de Jong, W. A. Exploring finite temperature properties of materials with quantum computers. Preprint at http://arxiv.org/abs/2109.01619 (2021).
Wu, J. & Hsieh, T. H. Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett. 123, 220502 (2019).
Article Google Scholar
Download references
We thank E. Gull and H. Ma for fruitful discussions. This work was supported by MICCoM, as part of the Computational Materials Sciences Program funded by the US Department of Energy. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the US DOE under contract DE-AC02-05CH11231, resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357, and resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US DOE under contract DE-AC05-00OR22725. We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team.
These authors contributed equally: Christian Vorwerk, Nan Sheng.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
Christian Vorwerk & Giulia Galli
Department of Chemistry, University of Chicago, Chicago, IL, USA
Nan Sheng, Benchen Huang & Giulia Galli
Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
Marco Govoni & Giulia Galli
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
G.G. conceived this perspective and formulated the final content with all authors. All authors contributed to the writing of the manuscript.
Correspondence to Marco Govoni or Giulia Galli.
The authors declare no competing interests.
Nature Computational Science thanks Cedric Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reprints and Permissions
Vorwerk, C., Sheng, N., Govoni, M. et al. Quantum embedding theories to simulate condensed systems on quantum computers. Nat Comput Sci 2, 424–432 (2022). https://doi.org/10.1038/s43588-022-00279-0
Download citation
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-022-00279-0
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Advertisement
Advanced search
© 2022 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.