The Journey to Building a True Quantum Computer – HPCwire

Since 1987 – Covering the Fastest Computers in the World and the People Who Run Them
Since 1987 – Covering the Fastest Computers in the World and the People Who Run Them
November 21, 2022
Nov. 21, 2022 — The past several years have been an exciting time in quantum computing. Billions of dollars have been invested, and there’s no shortage of advocates and detractors. Activity and momentum across the quantum community continue to grow. For proof, there have been a lot of recent headlines about increased qubit counts, commercially viable systems, roadmaps and startups. Some claim true commercialization is just around the corner.
Despite very exciting developments in the field, a fault-tolerant 1 million-plus qubit machine and true commercial uses for quantum computing are 10 to 15 years from reality. And that’s to achieve quantum practicality – the point at which quantum computers achieve commercial relevance by doing something significant to change our lives. Instead, the question should not be focused on when we reach commercialization but on whether some sort of quantum advantage is possible using devices with 50 to a few hundred qubits and what that technology looks like.
As the community continues to push forward with new research, the industry needs to increase qubit counts and improve qubit quality – moving to produce thousands of quality qubits, which is still several years away, and then scaling to millions.
Intel researchers have been working toward delivering a full-stack commercial quantum system for the past six years. This includes qubit architecture and algorithms research, control electronics, interconnects, quantum software toolchains and compilers, continuing to the application layer. We leverage the company’s deep expertise in silicon transistor design, high-volume manufacturing and advanced fabrication technologies to create silicon spin qubits.
Intel’s qubits are different from other approaches in the industry. While Intel isn’t the only company working on silicon qubits, we’re the only company using the same process line to make our qubits as we do our leading-edge logic technology. And since Intel is dedicated to transistor and microcircuit design, the company has technology like computer-aided design (TCAD) for device creation. That same capability doesn’t yet exist for quantum, but we’re developing it. Intel also differs from other quantum hardware developers because we enable the full-stack pieces in-house.
We believe this is the right approach. If we build silicon spin qubits on silicon wafers and develop a qubit technology that looks like a transistor, we can follow Moore’s Law of acceleration to build a large-scale system. And while it’s taken several years to translate a prototype in the lab into a fab process, we are getting there.
We’ve made significant gains including:
What’s Next for Quantum?
When it comes to quantum innovation, Intel is not alone. Other quantum vendors are working to develop their own chips and quantum-specific operating systems. There’s technological progress, like open-source libraries and new qubit processors. The industry has even started to explore how to combine hardware into a full stack to deliver a quantum service in the cloud (but the hardware must exist first).
Obviously, challenges remain.
There are several issues with quantum computing today. The industry needs better qubit devices and better-quality qubits. Regardless of qubit type, we need better materials.
For example, we need even cleaner materials with sharper interfaces than we use today for our transistor processes. In addition, we’ve yet to see anyone propose an interconnect technology that is more elegant than how we wire microprocessors today.
We need faster control and the ability to simplify wiring by having the control chips co-integrated close to the qubit chip. And, finally, we need to demonstrate error correction so that we can have more stable qubits that can perform the kinds of calculations that will eventually enable us to reach quantum practicality.
To get us there, Intel foresees a hybrid future for quantum along with classical supercomputing. Right now, we’re limited to working with a relatively small number of qubits that we can either simulate or run so that quantum algorithms can be co-optimized between classical components and quantum components. Parts of the algorithm might run on a classical system, with other data from the quantum system. A very large-scale quantum computer will probably have a small supercomputer next to it. And the bill of materials for a quantum computer may have more from the classical computing space than from the actual quantum chip.
What will be the next big step for the entire quantum community?
The next major “quantum leap” is probably five years away, when we have a few thousand qubits and can essentially create a logical qubit. But even then, more than one logical qubit will be needed to do something commercially relevant. That said, breakthroughs are happening in the lab and showing immense promise for what could be possible. For Intel, collaborations across the industry, research communities and academia have driven compelling discoveries in the field. The more we explore, the more we learn, and the more we collaborate, the faster we go.
For more information about Intel’s point of view on the quantum race and quantum computing hype versus realities, read my recent article on IEEE Spectrum
Source: James Clarke, Quantum Hardware at Intel
More Off The Wire
Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!
November 21, 2022
Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…
November 19, 2022
For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the wariness of quantum computing felt by significant portions Read more…
November 18, 2022
One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. “The prediction is two or three years we’ll be surpassing your architectures and available performance with… Read more…
November 17, 2022
For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Special Prize for High Performance Computing-Based Covid-19 Rese Read more…
November 17, 2022
At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – including the exascale Frontier system – to conduct in-depth re Read more…
Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…
Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…
November 17, 2022
Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing human writing given simple prompts. But LLMs have also shown p Read more…
November 21, 2022
Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…
November 19, 2022
For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…
November 18, 2022
One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. “The prediction is two or three years we’ll be surpassing your architectures and available performance with… Read more…
November 17, 2022
For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…
November 17, 2022
At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…
November 17, 2022
Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…
November 16, 2022
For a few moments, the atmosphere was more Rock Concert than Supercomputing Conference with many members of a packed audience standing, cheering, and waving signs as Jack Dongarra took the stage to deliver the annual ACM Turing Award lecture at SC22. Read more…
November 16, 2022
Europe’s sovereign approach to exascale computing is complicating plans for U.S. chipmakers to breakthrough in the market, and in the process, empowering local chipmakers. For one, a European chip startup called SiPearl is emerging as an early… Read more…
September 23, 2022
Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative… Read more…
November 18, 2022
One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. “The prediction is two or three years we’ll be surpassing your architectures and available performance with… Read more…
August 30, 2022
It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…
August 22, 2022
Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present… Read more…
August 16, 2022
Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would… Read more…
November 12, 2022
Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel… Read more…
October 12, 2022
Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…
August 2, 2022
The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…
September 2, 2022
Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…
September 8, 2022
The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…
August 3, 2022
After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget… Read more…
August 12, 2022
Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…
October 6, 2022
Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…
August 24, 2022
Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types… Read more…
August 11, 2022
A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant’s open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip’s conception to delivery of the final product in a user’s hand. Google’s… Read more…
August 17, 2022
“It is my privilege to welcome you to the dedication of Frontier, the supercomputer that broke the exascale barrier.” That was the introduction by Oak Ridge National Laboratory Director Thomas Zacharia, at a small, public event on August 17 to officially dedicate the supercomputer, which in May became the first system to achieve over 1.0 exaflops of 64-bit performance on the… Read more…
© 2022 HPCwire. All Rights Reserved. A Tabor Communications Publication
HPCwire is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications, Inc. is prohibited.

source

Related Articles