Recent advances in crop transformation technologies – Nature.com
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Plants (2022)
125
27
Metrics details
Agriculture is experiencing a technological inflection point in its history, while also facing unprecedented challenges posed by human population growth and global climate changes. Key advancements in precise genome editing and new methods for rapid generation of bioengineered crops promise to both revolutionize the speed and breadth of breeding programmes and increase our ability to feed and sustain human population growth. Although genome editing enables targeted and specific modifications of DNA sequences, several existing barriers prevent the widespread adoption of editing technologies for basic and applied research in established and emerging crop species. Inefficient methods for the transformation and regeneration of recalcitrant species and the genotype dependency of the transformation process remain major hurdles. These limitations are frequent in monocotyledonous crops, which alone provide most of the calories consumed by human populations. Somatic embryogenesis and de novo induction of meristems — pluripotent groups of stem cells responsible for plant developmental plasticity — are essential strategies to quickly generate transformed plants. Here we review recent discoveries that are rapidly advancing nuclear transformation technologies and promise to overcome the obstacles that have so far impeded the widespread adoption of genome editing in crop species.
This is a preview of subscription content, access via your institution
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
Phillips, R. L., Kaeppler, S. M. & Olhoft, P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl Acad. Sci. USA 91, 5222–5226 (1994).
Article CAS Google Scholar
Neelakandan, A. K. & Wang, K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep. 31, 597–620 (2012).
Article CAS Google Scholar
Gordon-Kamm, B. et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel) 8, 38 (2019).
Article CAS Google Scholar
Anami, S., Njuguna, E., Coussens, G., Aesaert, S. & Van Lijsebettens, M. Higher plant transformation: principles and molecular tools. Int. J. Dev. Biol. 57, 483–494 (2013).
Article CAS Google Scholar
Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).
Article CAS Google Scholar
Clark, K. A. & Krysan, P. J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J. 64, 990–1001 (2010).
Article CAS Google Scholar
Hu, Y., Chen, Z., Zhuang, C. & Huang, J. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration. Plant J. 90, 954–965 (2017).
Article CAS Google Scholar
Krispil, R. et al. The position and complex genomic architecture of plant T-DNA insertions revealed by 4SEE. Int. J. Mol. Sci. 21, 2373 (2020).
Article CAS Google Scholar
Pucker, B., Kleinbolting, N. & Weisshaar, B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis. BMC Genomics 22, 599 (2021).
Article CAS Google Scholar
Jupe, F. et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 15, e1007819 (2019).
Article Google Scholar
Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).
Article CAS Google Scholar
Liang, Z. et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413–430 (2018).
Article CAS Google Scholar
Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).
Article CAS Google Scholar
Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).
Article CAS Google Scholar
Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl Acad. Sci. USA 93, 9975–9979 (1996).
Article CAS Google Scholar
De Saeger, J. et al. Agrobacterium strains and strain improvement: present and outlook. Biotechnol. Adv. 53, 107677 (2021).
Article Google Scholar
Lacroix, B. & Citovsky, V. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annu Rev. Phytopathol. 57, 231–251 (2019).
Article CAS Google Scholar
Yuan, Z. C. et al. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc. Natl Acad. Sci. USA 104, 11790–11795 (2007).
Article CAS Google Scholar
Lee, C. W. et al. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948–2962 (2009).
Article CAS Google Scholar
Zhang, Q. et al. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol. 181, 1441–1448 (2019).
Article CAS Google Scholar
Anand, A. et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol. Biol. 97, 187–200 (2018).
Article CAS Google Scholar
Kang, M. et al. An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos. Front Plant Sci. 13, 860971 (2022).
Article Google Scholar
Raman, V. et al. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat. Commun. 13, 2581 (2022).
Article CAS Google Scholar
Lv, Z., Jiang, R., Chen, J. & Chen, W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J. 104, 880–891 (2020).
Article CAS Google Scholar
Vejlupkova, Z. et al. No evidence for transient transformation via pollen magnetofection in several monocot species. Nat. Plants 6, 1323–1324 (2020).
Article Google Scholar
Zhao, X. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 3, 956–964 (2017).
Article CAS Google Scholar
Wang, Z. P. et al. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J. Integr. Plant Biol. 64, 1145–1156 (2022).
Article CAS Google Scholar
Ma, X., Zhang, X., Liu, H. & Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 6, 773–779 (2020).
Article CAS Google Scholar
Hu, J. et al. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol. Plant Pathol. 20, 1463–1474 (2019).
Article CAS Google Scholar
Li, T. et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant 14, 1787–1798 (2021).
Article CAS Google Scholar
Williams, L. E. Genetics of shoot meristem and shoot regeneration. Annu. Rev. Genet. 55, 661–681 (2021).
Article Google Scholar
Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406 (2019).
Article CAS Google Scholar
Motte, H., Vereecke, D., Geelen, D. & Werbrouck, S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32, 107–121 (2014).
Article CAS Google Scholar
Efroni, I. et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721–1733 (2016).
Article CAS Google Scholar
Verma, S., Attuluri, V. P. S. & Robert, H. S. An essential function for auxin in embryo development. Cold Spring Harb. Perspect. Biol. 13, a039966 (2021).
Article CAS Google Scholar
Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).
Article CAS Google Scholar
Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).
Article CAS Google Scholar
Lardon, R., Wijnker, E., Keurentjes, J. & Geelen, D. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun. Biol. 3, 549 (2020).
Article CAS Google Scholar
Lin, G. et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol. 22, 175 (2021).
Article CAS Google Scholar
Wang, F. X. et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54, 742–757e748 (2020).
Article CAS Google Scholar
Li, M. et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 188, 1095–1110 (2022).
Article CAS Google Scholar
Uc-Chuc, M. A. et al. YUCCA-mediated biosynthesis of the auxin IAA is required during the somatic embryogenic induction process in Coffea canephora. Int. J. Mol. Sci. 21, 4751 (2020).
Article CAS Google Scholar
Wang, Y. et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. Plant J. 109, 980–991 (2021).
Article Google Scholar
Wojcikowska, B. et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238, 425–440 (2013).
Article CAS Google Scholar
Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).
Article CAS Google Scholar
Zhang, T. Q. et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29, 1073–1087 (2017).
Article CAS Google Scholar
Wu, L. Y. et al. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 57, 526–542e527 (2022).
Article CAS Google Scholar
Matsuo, N., Makino, M. & Banno, H. Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci. 181, 39–46 (2011).
Article CAS Google Scholar
Iwase, A. et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29, 54–69 (2017).
Article CAS Google Scholar
Heyman, J. et al. The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nat. Plants 2, 16165 (2016).
Article CAS Google Scholar
Ikeuchi, M. et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 175, 1158–1174 (2017).
Article CAS Google Scholar
Sakamoto, Y. et al. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. Plant Cell 34, 4348–4365 (2022).
Article Google Scholar
Hofhuis, H. et al. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr. Biol. 23, 956–962 (2013).
Article CAS Google Scholar
Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 1017–1030 (2015).
Article CAS Google Scholar
Lian, Z. et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol. J. 20, 1622–1635 (2022).
Article CAS Google Scholar
Hernandez-Coronado, M. et al. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev. Cell 57, 451–465.e6 (2022).
Article CAS Google Scholar
Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749 (2002).
Article CAS Google Scholar
Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).
Article CAS Google Scholar
Lowe, K. et al. Morphogenic regulators BABY BOOM and WUSCHEL improve monocot transformation. Plant Cell 28, 1998–2015 (2016).
Article CAS Google Scholar
Khanday, I., Santos-Medellin, C. & Sundaresan, V. Rice embryogenic trigger BABY BOOM1 promotes somatic embryogenesis by upregulation of auxin biosynthesis genes. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.265025 (2020).
Horstman, A. et al. The BABY BOOM transcription factor activates the LEC1–ABI3–FUS3–LEC2 network to induce somatic embryogenesis. Plant Physiol. 175, 848–857 (2017).
Article CAS Google Scholar
Underwood, C. J. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93 (2022).
Article CAS Google Scholar
Maren, N. A. et al. Genotype-independent plant transformation. Hortic. Res. 9, uhac047 (2022).
Article Google Scholar
Salaun, C., Lepiniec, L. & Dubreucq, B. Genetic and molecular control of somatic embryogenesis. Plants (Basel) 10, 1467 (2021).
Article CAS Google Scholar
Kausch, A. P. et al. Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci. 281, 186–205 (2019).
Article CAS Google Scholar
Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).
Article CAS Google Scholar
Lowe, K. et al. Rapid genotype ‘independent’ Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitr. Cell. Dev. Biol. Plant 54, 240–252 (2018).
Article CAS Google Scholar
Hoerster, G. et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitr. Cell. Dev. Biol. Plant 56, 265–279 (2020).
Article CAS Google Scholar
Pan, C. et al. Boosting plant genome editing with a versatile CRISPR–Combo system. Nat. Plants 8, 513–525 (2022).
Article CAS Google Scholar
Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110–117 (2022).
Article Google Scholar
Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).
Article CAS Google Scholar
Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).
Article CAS Google Scholar
Ortiz-Ramirez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).
Article CAS Google Scholar
Forzani, C. et al. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr. Biol. 24, 1939–1944 (2014).
Article CAS Google Scholar
Pi, L. et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33, 576–588 (2015).
Article CAS Google Scholar
Zhai, N. & Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 1453–1460 (2021).
Article CAS Google Scholar
Wang, K. et al. Author correction: the gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 717–720 (2022).
Article Google Scholar
Li, S. et al. The OsmiR396c–OsGRF4–OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14, 2134–2146 (2016).
Article CAS Google Scholar
Rodriguez, R. E. et al. MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27, 3354–3366 (2015).
Article CAS Google Scholar
Liebsch, D. & Palatnik, J. F. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr. Opin. Plant Biol. 53, 31–42 (2020).
Article CAS Google Scholar
Debernardi, J. M. et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J. 79, 413–426 (2014).
Article CAS Google Scholar
Luo, G. & Palmgren, M. GRF–GIF chimeras boost plant regeneration. Trends Plant Sci. 26, 201–204 (2021).
Article CAS Google Scholar
Zhang, X. et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in hemp (Cannabis sativa L.). Plant Biotechnol. J. 19, 1979–1987 (2021).
Article CAS Google Scholar
Kong, J. et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Front. Plant Sci. 11, 572319 (2020).
Article Google Scholar
Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 15196 (2015).
Article Google Scholar
Aesaert, S. et al. Optimized transformation and gene editing of the B104 public maize inbred by improved tissue culture and use of morphogenic regulators. Front. Plant Sci. 13, 883847 (2022).
Article Google Scholar
Masters, A. et al. Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. J. Vis. Exp. https://doi.org/10.3791/60782 (2020).
Mookkan, M., Nelson-Vasilchik, K., Hague, J., Zhang, Z. J. & Kausch, A. P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep. 36, 1477–1491 (2017).
Article CAS Google Scholar
Chen, Z., Debernardi, J. M., Dubcovsky, J. & Gallavotti, A. The combination of morphogenic regulators BABY BOOM and GRF–GIF improves maize transformation efficiency. Preprint at bioRxiv https://doi.org/10.1101/2022.09.02.506370 (2022).
Reed, K. M. & Bargmann, B. O. R. Protoplast regeneration and its use in new plant breeding technologies. Front. Genome Ed. 3, 734951 (2021).
Article Google Scholar
Cho, H. J. et al. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. Plant Biotechnol. J. 20, 977–990 (2022).
Article CAS Google Scholar
Zobrist, J. D. et al. Transformation of teosinte (Zea mays ssp. parviglumis) via biolistic bombardment of seedling-derived callus tissues. Front. Plant Sci. 12, 773419 (2021).
Article Google Scholar
Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).
Article CAS Google Scholar
Thakare, D., Tang, W., Hill, K. & Perry, S. E. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146, 1663–1672 (2008).
Article CAS Google Scholar
Arroyo-Herrera, A. et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult. 94, 171–180 (2008).
Article Google Scholar
Che, P. et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 5, 344 (2022).
Article CAS Google Scholar
Liu, Y. et al. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 genome-editing system to Brassica rapa var. rapa. Plant Methods 18, 98 (2022).
Article CAS Google Scholar
Hu, W. et al. Kn1 gene overexpression drastically improves genetic transformation efficiencies of citrus cultivars. Plant Cell Tissue Organ Cult. 125, 81–91 (2016).
Article CAS Google Scholar
Elhiti, M., Tahir, M., Gulden, R. H., Khamiss, K. & Stasolla, C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J. Exp. Bot. 61, 4069–4085 (2010).
Article CAS Google Scholar
Heidmann, I., de Lange, B., Lambalk, J., Angenent, G. C. & Boutilier, K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 30, 1107–1115 (2011).
Article CAS Google Scholar
Deng, W., Luo, K., Li, Z. & Yang, Y. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci. 177, 43–48 (2009).
Article CAS Google Scholar
Zhou, Z. et al. Boosting transformation in wheat by BBM–WUS. Preprint at bioRxiv https://doi.org/10.1101/2022.03.13.483388 (2022).
Feng, Q. et al. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4–GIF1 gene. J. Integr. Plant Biol. 63, 2038–2042 (2021).
Article CAS Google Scholar
Download references
Research in the Gallavotti lab is supported by grants from the National Science Foundation (IOS nos 1546873, 1916804 and 2026561). Research in the Dubcovsky lab is supported by grants no. 2022-68013-36439 and no. 2022-67013-36209 from the USDA National Institute of Food and Agriculture and by the Howard Hughes Medical Institute.
Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
Zongliang Chen & Andrea Gallavotti
Department of Plant Sciences, University of California Davis, Davis, CA, USA
Juan M. Debernardi & Jorge Dubcovsky
Howard Hughes Medical Institute, Chevy Chase, MD, USA
Juan M. Debernardi & Jorge Dubcovsky
Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
Andrea Gallavotti
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Z.C., J.M.D., J.D. and A.G. conceived the manuscript, contributed to writing and editing, and approved the manuscript.
Correspondence to Andrea Gallavotti.
J.M.D. is co-inventor in patent no. US2017/0362601A1, which describes the use of chimaeric GRF–GIF proteins with enhanced effects on plant growth (Universidad Nacional de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas). J.D. and J.M.D. are co-inventors in UC Davis patent application no. WO2021007284A2, which describes the use of GRF–GIF chimaeras to enhance regeneration efficiency in plants.
Nature Plants thanks David Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
Chen, Z., Debernardi, J.M., Dubcovsky, J. et al. Recent advances in crop transformation technologies. Nat. Plants (2022). https://doi.org/10.1038/s41477-022-01295-8
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41477-022-01295-8
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Advertisement
© 2022 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.