Signatures of Alien Technology: The Key to Finding Intelligent Extraterrestrial Life – SciTechDaily
By
Astronomers have been looking for radio waves sent by a distant civilization for more than 60 years.
If an alien were to look at Earth, many human technologies – from cell towers to fluorescent light bulbs – could be a beacon signifying the presence of life.
We are two astronomers who work on the search for extraterrestrial intelligence – or SETI. In our research, we try to characterize and detect signs of technology originating from beyond Earth. These are called technosignatures. While scanning the sky for a TV broadcast of some extraterrestrial Olympics may sound straightforward, searching for signs of distant, advanced civilizations is a much more nuanced and difficult task than it might seem.
Saying ‘hello’ with radios and lasers
The modern scientific search for extraterrestrial intelligence began in 1959 when astronomers Giuseppe Cocconi and Philip Morrison showed that radio transmissions from Earth could be detected by radio telescopes at interstellar distances. The same year, Frank Drake, launched the first SETI search, Project Ozma, by pointing a large radio telescope at two nearby Sun-like stars to see if he could detect any radio signals coming from them. Following the invention of the laser in 1960, astronomers showed that visible light could also be detected from distant planets.
A laser – like the one seen here – or beam of radio waves pointed intentionally at Earth would be a strong sign of extraterrestrial life. Credit: G. Hüdepohl/ESO
These first, foundational attempts to detect radio or laser signals from another civilization were all looking for focused, powerful signals that would have been intentionally sent to the solar system and meant to be found.
Given the technological limitations of the 1960s, astronomers did not give serious thought to searching for broadcast signals – like television and radio broadcasts on Earth – that would leak into space. But a beam of a radio signal, with all of its power focused towards Earth, could be detectable from much farther away – just picture the difference between a laser and a weak light bulb.
The search for intentional radio and laser signals is still one of the most popular SETI strategies today. However, this approach assumes that extraterrestrial civilizations want to communicate with other technologically advanced life. Humans very rarely send targeted signals into space, and some scholars argue that intelligent species may purposefully avoid broadcasting out their locations. This search for signals that no one may be sending is called the SETI Paradox.
This artist’s impression shows the Square Kilometer Array, a telescope array currently being built in both Australia and Africa that will be sensitive enough to detect the equivalent of radio broadcasts from distant planets. Credit: SPDO/TDP/DRAO/Swinburne Astronomy Productions
Leaking radio waves
Though humans don’t transmit many intentional signals out to the cosmos, many technologies people use today produce a lot of radio transmissions that leak into space. Some of these signals would be detectable if they came from a nearby star.
The worldwide network of television towers constantly emits signals in many directions that leak into space and can accumulate into a detectable, though relatively faint, radio signal. Research is ongoing as to whether current emissions from cell towers in the radio frequency on Earth would be detectable using today’s telescopes, but the upcoming Square Kilometer Array radio telescope will be able to detect even fainter radio signals with 50 times the sensitivity of current radio telescope arrays.
Not all human-made signals are so unfocused, though. Astronomers and space agencies use beams of radio waves to communicate with satellites and spacecraft in the solar system. Some researchers also use radio waves for radar to study asteroids. In both of these cases, the radio signals are more focused and pointed out into space. Any extraterrestrial civilization that happened to be in the line of sight of these beams could likely detect these unambiguously artificial signals.
A Dyson Sphere is a theoretical megastructure that would surround a star and collect its light to use as energy. Credit: Kevin Gill/Flickr
Finding megastructures
Aside from finding an actual alien spacecraft, radio waves are the most common technosignatures featured in sci-fi movies and books. But they are not the only signals that could be out there.
In 1960, astronomer Freeman Dyson theorized that, since stars are by far the most powerful energy source in any planetary system, a technologically advanced civilization might collect a significant portion of the star’s light as energy with what would essentially be a massive solar panel. Many astronomers call these megastructures, and there are a few ways to detect them.
After using the energy in the captured light, the technology of an advanced society would re-emit some of the energy as heat. Astronomers have shown that this heat could be detectable as extra infrared radiation coming from a star system.
Another possible way to find a megastructure would be to measure its dimming effect on a star. Specifically, large artificial satellites orbiting a star would periodically block some of its light. This would appear as dips in the star’s apparent brightness over time. Astronomers could detect this effect similarly to how distant planets are discovered today.
Advanced civilizations may produce a lot of pollution in the form of chemicals, light and heat that can be detected across the vast distances of space. Credit: NASA/Jay Freidlander
A whole lot of pollution
Another technosignature that astronomers have thought about is pollution.
Chemical pollutants – like nitrogen dioxide and chlorofluorocarbons on Earth are almost exclusively produced by human industry. It is possible to detect these molecules in the atmospheres of exoplanets with the same method the
Some astronomers support a generalized SETI approach which searches for anything in space that current scientific knowledge cannot naturally explain. Some, like us, continue to search for both intentional and unintentional technosignatures. The bottom line is that there are many avenues for detecting distant life. Since no one knows what approach is likely to succeed first, there is still a lot of exciting work left to do.
Written by:
- Macy Huston – PhD Candidate in Astronomy and Astrophysics, Penn State
- Jason Wright – Professor of Astronomy and Astrophysics, Penn State
This article was first published in The Conversation.![]()
Astronomers have been looking for radio waves sent by a distant civilization for more than 60 years.
If an alien were to look at Earth, many human technologies – from cell towers to fluorescent light bulbs – could be a beacon signifying the presence of life.
We are two astronomers who work on the search for extraterrestrial intelligence – or SETI. In our research, we try to characterize and detect signs of technology originating from beyond Earth. These are called technosignatures. While scanning the sky for a TV broadcast of some extraterrestrial Olympics may sound straightforward, searching for signs of distant, advanced civilizations is a much more nuanced and difficult task than it might seem.
The modern scientific search for extraterrestrial intelligence began in 1959 when astronomers Giuseppe Cocconi and Philip Morrison showed that radio transmissions from Earth could be detected by radio telescopes at interstellar distances. The same year, Frank Drake, launched the first SETI search, Project Ozma, by pointing a large radio telescope at two nearby Sun-like stars to see if he could detect any radio signals coming from them. Following the invention of the laser in 1960, astronomers showed that visible light could also be detected from distant planets.
A laser – like the one seen here – or beam of radio waves pointed intentionally at Earth would be a strong sign of extraterrestrial life. Credit: G. Hüdepohl/ESO
A laser – like the one seen here – or beam of radio waves pointed intentionally at Earth would be a strong sign of extraterrestrial life. Credit: G. Hüdepohl/ESO
These first, foundational attempts to detect radio or laser signals from another civilization were all looking for focused, powerful signals that would have been intentionally sent to the solar system and meant to be found.
Given the technological limitations of the 1960s, astronomers did not give serious thought to searching for broadcast signals – like television and radio broadcasts on Earth – that would leak into space. But a beam of a radio signal, with all of its power focused towards Earth, could be detectable from much farther away – just picture the difference between a laser and a weak light bulb.
The search for intentional radio and laser signals is still one of the most popular SETI strategies today. However, this approach assumes that extraterrestrial civilizations want to communicate with other technologically advanced life. Humans very rarely send targeted signals into space, and some scholars argue that intelligent species may purposefully avoid broadcasting out their locations. This search for signals that no one may be sending is called the SETI Paradox.
This artist’s impression shows the Square Kilometer Array, a telescope array currently being built in both Australia and Africa that will be sensitive enough to detect the equivalent of radio broadcasts from distant planets. Credit: SPDO/TDP/DRAO/Swinburne Astronomy Productions
Leaking radio waves
This artist’s impression shows the Square Kilometer Array, a telescope array currently being built in both Australia and Africa that will be sensitive enough to detect the equivalent of radio broadcasts from distant planets. Credit: SPDO/TDP/DRAO/Swinburne Astronomy Productions
Though humans don’t transmit many intentional signals out to the cosmos, many technologies people use today produce a lot of radio transmissions that leak into space. Some of these signals would be detectable if they came from a nearby star.
The worldwide network of television towers constantly emits signals in many directions that leak into space and can accumulate into a detectable, though relatively faint, radio signal. Research is ongoing as to whether current emissions from cell towers in the radio frequency on Earth would be detectable using today’s telescopes, but the upcoming Square Kilometer Array radio telescope will be able to detect even fainter radio signals with 50 times the sensitivity of current radio telescope arrays.
Not all human-made signals are so unfocused, though. Astronomers and space agencies use beams of radio waves to communicate with satellites and spacecraft in the solar system. Some researchers also use radio waves for radar to study asteroids. In both of these cases, the radio signals are more focused and pointed out into space. Any extraterrestrial civilization that happened to be in the line of sight of these beams could likely detect these unambiguously artificial signals.
A Dyson Sphere is a theoretical megastructure that would surround a star and collect its light to use as energy. Credit: Kevin Gill/Flickr
Finding megastructures
A Dyson Sphere is a theoretical megastructure that would surround a star and collect its light to use as energy. Credit: Kevin Gill/Flickr
Aside from finding an actual alien spacecraft, radio waves are the most common technosignatures featured in sci-fi movies and books. But they are not the only signals that could be out there.
In 1960, astronomer Freeman Dyson theorized that, since stars are by far the most powerful energy source in any planetary system, a technologically advanced civilization might collect a significant portion of the star’s light as energy with what would essentially be a massive solar panel. Many astronomers call these megastructures, and there are a few ways to detect them.
After using the energy in the captured light, the technology of an advanced society would re-emit some of the energy as heat. Astronomers have shown that this heat could be detectable as extra infrared radiation coming from a star system.
Another possible way to find a megastructure would be to measure its dimming effect on a star. Specifically, large artificial satellites orbiting a star would periodically block some of its light. This would appear as dips in the star’s apparent brightness over time. Astronomers could detect this effect similarly to how distant planets are discovered today.
Advanced civilizations may produce a lot of pollution in the form of chemicals, light and heat that can be detected across the vast distances of space. Credit: NASA/Jay Freidlander
A whole lot of pollution
Advanced civilizations may produce a lot of pollution in the form of chemicals, light and heat that can be detected across the vast distances of space. Credit: NASA/Jay Freidlander
Another technosignature that astronomers have thought about is pollution.
Chemical pollutants – like nitrogen dioxide and chlorofluorocarbons on Earth are almost exclusively produced by human industry. It is possible to detect these molecules in the atmospheres of exoplanets with the same method the
Search for Extraterrestrial Intelligence: How Microbes Could Communicate With Alien Species
Extraterrestrial Intelligence: Breakthrough Listen Releases 2 Petabytes of Data From SETI Survey
Is Something Else Hidden at the Center of the Milky Way?
Radio Signals from Jupiter Could Aid in the Search for Extraterrestrial Life on Its Moons
Massive Hunt for Extraterrestrial Life Completed: What Astronomers Found in Search of 10 Million Star Systems for Alien Technology
Using Game Theory to Help Discover Intelligent Alien Life
NASA’s Revolutionary Laser Communications Mission: 6 Things You Need To Know
SETI: The Future of Extraterrestrial Intelligence
I’m sorry, But a G8V and K2V are not “sun-like stars”. the K2V has a temp. around 4900 Kelvin and the G8V is a little better at around 5570 BUT they are NOT SUN-LIKE…
Email address is optional. If provided, your email will not be published or shared.
SciTechDaily: Home of the best science and technology news since 1998. Keep up with the latest scitech news via email or social media.
> Subscribe Free to Email Digest
December 29, 2022
Scientists Uncover a Surprising New Benefit of Flu Vaccination
A recent University of Calgary study indicates that the annual flu vaccine lowers the risk of stroke. According to researchers from the University of Calgary,…
A recent University of Calgary study indicates that the annual flu vaccine lowers the risk of stroke. According to researchers from the University of Calgary,…
December 29, 2022
Startling Discovery: 60% of Home “Compostable” Plastic Doesn’t Fully Decompose, Contaminating Our Soil
December 29, 2022
Newly Identified Genetic Variant Predisposes People to Slimness
December 29, 2022
NASA’s IXPE Quickly Observes Aftermath of Incredible Cosmic Blast – “This Is Now or Never”
December 29, 2022
Breakthrough Test for Alzheimer’s: New Biomarker Can Detect Neurodegeneration in Blood
December 29, 2022
New Research: Bad Sleep, Snoring, and Sleepiness During the Day Could All Increase Your Risk of Permanent Sight Loss
December 29, 2022
10 Times This Year the Webb Telescope Blew Astronomers Away With Stunning New Images of Our Universe
December 28, 2022
Atomic Clocks in Space: The New Trick for Uncovering the Secrets of Dark Matter
Copyright © 1998 – 2022 SciTechDaily. All Rights Reserved.